This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Synthesis and Properties of mRNA 5'-Cap Analogues with 7-Methylguanine Replaced by Benzimidazole or 3-Methylbenzimidazole

L. Chlebicka^{ab}; Z. Wieczorek^c; R. Stolarski^b; J. Stepinski^d; E. Darzynkiewicz^b; D. Shugar^{ab}
^a Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland ^b Department of Biophysics, University of Warsaw, Warsaw, Poland ^c Department of Physics and Biophysics, Academy of Agriculture and Technology, Olsztyn, Poland ^d Department of Chemistry, University of Warsaw, Warsaw, Poland

To cite this Article Chlebicka, L. , Wieczorek, Z. , Stolarski, R. , Stepinski, J. , Darzynkiewicz, E. and Shugar, D.(1995) 'Synthesis and Properties of mRNA 5'-Cap Analogues with 7-Methylguanine Replaced by Benzimidazole or 3-Methylbenzimidazole', Nucleosides, Nucleotides and Nucleic Acids, 14: 3, 771 - 775

To link to this Article: DOI: 10.1080/15257779508012469 URL: http://dx.doi.org/10.1080/15257779508012469

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND PROPERTIES OF mRNA 5'-CAP ANALOGUES WITH 7-METHYLGUANINE REPLACED BY BENZIMIDAZOLE OR 3-METHYLBENZIMIDAZOLE.

L. Chlebicka a,b , Z. Wieczorek c , R. Stolarski b , J. Stepinski d , E. Darzynkiewicz b , D. Shugar* a,b

^aInstitute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland, ^bDepartment of Biophysics, University of Warsaw, Warsaw, Poland, ^cDepartment of Physics and Biophysics, Academy of Agriculture and Technology, Olsztyn, Poland, ^dDepartment of Chemistry, University of Warsaw, Warsaw, Poland,

Abstract: Several new analogues of the mRNA 5'-cap structure, $m^7G(5')p_n(5')N$, with n=2-4, have been synthesized in which the m^7G component is replaced by 1-(β -Dribofuranosyl)benzimidazole (RBz) or 3-methyl-RBz. The latter, like m^7G , has a positively charged imidazole ring and is likewise fluorescent. All compounds have been characterized by various physico-chemical and enzymatic criteria, and by 1H and ^{31}P NMR spectroscopy .

The 5'-terminal cap of eukaryotic mRNA, m⁷G(5')ppp(5')N, is necessary for optimal protein translation, pre-mRNA splicing and efficient transport of mRNA from nucleus to the cytoplasm. In a continuation of ongoing studies aimed at development of potentially useful cap analogues for examining the nature of the interactions between the mRNA cap and specific protein factors (e.g. cap binding proteins, CBP), we have prepared a series of cap analogues in which the m⁷G component has been replaced by 1-β-D-ribofuranosylbenzimidazole (RBz) or by 3-methyl-RBz (m³RBz). Neither of these is capable of base pairing. Furthermore, m³RBz partially mimics m⁷G in that it also carries a positive charge on the imidazole ring (Scheme 1) and is highly fluorescent.

The synthetic procedures are depicted in the accompanying Scheme 2. RBz (1) was prepared according to the procedure of Niedballa & Vorbruggen¹ from benzimidazole and 1-O-acetyl-2,3,5-tri-O-benzoyl-β-ribofuranose. The product was phosphorylated according to the procedure of Yoshikawa² to give the 5'-phosphate, RBz-5'-phosphate (2). Methylation of 2 with methyl iodide led to m³RBZ-5'-

772 CHLEBICKA ET AL.

$$(R = ribose)$$

$$HN$$

$$\downarrow 0$$

$$\downarrow 1$$

$$\downarrow 2$$

$$\downarrow 1$$

$$\downarrow$$

Scheme 1

Scheme 2

Table 1. TLC and HPLC characteristics of products:

Rf values on cellulose F254 plates (Merck) with 2 solvents:

A: saturated ammoniumsulfate, potassium hydrogenphosphate (0.1M) pH 7.4,
2-propanol (79:19:2 v/v/v)

B: aqueous ammonium sulfate (1%, w/v), 2-propanol (1:2 v/v)
R_T were measured on Spectra-Physics HPLC equipment with Supelco LC18-T column in 0-100% B gradient in 15 minutes. Mobile phases:

A: 0.1M KH2PO4 at pH 6.0 B: 75% 0.1M KH2PO4 pH 6.0 + 25% McOH

Flow rate 1.3 ml/min. Detection by UV absorption at 260nm.

Compound	Rf with solvent		
	A	В	RT [min]
RBzMP (2)	0.45	0.39	13.73
RBzpppG (6)	0.26	0.13	10.72
RBzTP (10)	0.56	0.19	9.39
m ³ RBzMP (<u>3</u>)	0.63	0.36	9.79
m ³ RBzppG (<u>8</u>)	0.41	0.11	9.49
m ³ RBzpppG (Z)	0.44	0.06	8.75
m ³ RBzppppG (9)	0.50	0.03	8.61
m ³ RBzTP (11)	0.78	0.10	8.42

Table 2. Spectroscopic data of products at pH 7:

Compound	λ_{max}	Emaxx103
RBz ª	281 273 245	3.5 3.7 6.8
RBzMP	279.8 272.5 245.2	3.3 3.7 7.4
RBzpppG	250.4	19.8
RBzTP	280.1 272.4 245.3	3.3 3.8 7.0
m ³ RBzMP	276.5 269.5 263.2 255.7	5.9 7.0 6.3 6.1
m ³ RBzppG	254.9	21.4
m ³ RBzpppG	254.7	21.0
m ³ RBzppppG	269.0 254.0	17.4 21.0
m ³ RBzTP	276.4 269.6	5.8 6.9

phosphate (3). The two monophosphates $\underline{2}$ and $\underline{3}$, on treatment with phosphatase or 5'-nucleotidase, were quantitatively converted to the parent nucleosides $\underline{1}$ and m^3RBz , respectively.

The anhydrous triethylammonium salts of 2 and 3 were, in turn, converted by the procedure of Lohrmann & Orgel³ to the phosphorimidazolidates 4 and 5 in high yield. These were then condensed according to the recently improved procedure of Sawai et al.^{4,5} with an equimolar mixture of GDP in the presence of MnCl₂ in 0.2M N-ethylmorpholine buffer pH 7 to give P¹-RBz-P³-Guo-5',5'-triphosphate (6, 29% yield) and P¹-m³RBz-P³-Guo-5',5'-triphosphate (7, 23% yield). Condensation of 5 with equimolar mixtures of MnCl₂ and the tributylammonium salts of GMP and GTP, respectively, gave P¹-m³RBz-P²-Guo-5',5'-diphosphate (8, 11.5% yield) and P¹-m³RBz-P⁴-Guo-5',5'-tetraphosphate (9, 14% yield)

The triphosphates of RBz (10) and m³RBz (11) were also prepared from 4 and 5, respectively, by condensation with anhydrous tributylammonium pyrophosphate in DMF, according to Hoard & Ott⁶ in yields of 60%.

774 CHLEBICKA ET AL.

The products 2, 3 and 6-11, were isolated by gradient elution with triethylammonium bicarbonate on a DEAE-Sephadex A25 (HCO₃-) column. Compound 7 required additional desalting on XAD resin. The products were then converted to their Na+ salts on Dowex 50 Wx2. They were characterized by TLC, HPLC (Table 1) and UV spectroscopy (Table 2), phosphodiesterase digestion (which quantitatively released 2 from 6, and 3 from 7, 8 and 9), and ¹H and ³¹P NMR spectroscopy.

NMR spectroscopy. ¹H NMR spectra were run on a Bruker AM 500 at 0.005 M in D₂O and chemical shifts recorded vs internal TSP. ³¹P spectra were recorded under the same conditions on a Varian XL 200. and chemical shifts recorded vs external H₃PO₄. The structures $\underline{2}$, $\underline{3}$ and $\underline{8}$ were fully confirmed by the ¹H NMR spectra. In the case of $\underline{7}$ and $\underline{9}$ additional confirmation was provided by the ³¹P spectra. For $\underline{7}$ (m³RBzp₃G), P¹ and P³ gave a common peak at -10.915 ppm, and P² at -22.405 ppm, while the mean value of the geminal coupling constants ³¹P-³¹P was 18.5 Hz. With $\underline{9}$ (m³RBzp₄G) the phosphorus atoms form an AA'XX' system, with chemical shifts for P¹,P⁴ of -10.890 ppm and for P²,P³ of -22.620 ppm, while coupling constants \underline{J} (P¹,P²) = \underline{J} (P³,P⁴) = 15.7 Hz, \underline{J} (P²,P³) = 20.6 Hz, and \underline{J} (P¹,P³) = \underline{J} (P²,P⁴) = 2.4 Hz. Complete NMR data, and their application to conformational analysis of the products, will be described elsewhere. It is worth noting that the conformations of caps with an m³RBz component were similar to the corresponding ones with an m⁷G component.

Fluorescence emission properties. Both RBz and m³RBz, as well as their nucleotides, exhibit appreciable fluorescence, e.g. for m³RBzMP (3) excitation at 255 nm leads to an emission band at 370 nm with a quantum yield of 0.30. With the cap analogues containing RBz (e.g. 6) or m³RBz (7, 8, 9) the emission is strongly quenched as a result of base stacking, so that enzymatic cleavage of the oligophosphate bridge leads to an almost 10-fold increase in fluorescence emission, a highly sensitive method for following the kinetics of the reactions.

The biological properties of the foregoing new cap analogues are presently under investigation.

Acknowledgments Supported by the State Committee for Scientific Research, KBN grant Nos. 4 0800 9101, 6 62539203 p/01 and 4 1765 91 01.

REFERENCES:

- 1. Niedballa, V. and Vorbruggen, H., J. Org. Chem. 1974, 39, 3654.
- 2. Yoshikawa, M., Kato, T., Takenishi, T., Bull. Chem. Soc. Japan 1969, 42, 3505.

- 3. Lohrmann, R. and Orgel, L.E., Tetrahedron 1978, 34, 853
- 4. Sawai, H., Wakai, H., Shimazu, M., Tetrahedron Lett. 1991, 32, 6905.
- 5. Sawai, H., Shimazu, M., Wakai, H., Wakabayashi, H., Shinozuka, K., *Nucleosides & Nucleotides* 1992, 11, 773.
- 6. Hoard, D.E. and Ott, D.G., J. Am. Chem. Soc. 1965, 87, 1786.
- 7. Kazimierczuk, Z., Dudycz, L., Stolarski, R., Shugar, D., Z. Naturforsch. 1980, 35c, 30.